The nuclear exosome and adenylation regulate posttranscriptional tethering of yeast GAL genes to the nuclear periphery.

نویسندگان

  • Sadanand Vodala
  • Katharine Compton Abruzzi
  • Michael Rosbash
چکیده

GAL genes and other activated yeast genes remain tethered to the nuclear periphery even after transcriptional shutoff. To identify factors that affect this tethering, we designed a plasmid-based visual screen. Although many factors affected GAL tethering during transcription, fewer specifically affected posttranscriptional tethering. Tw o of these, Rrp6p and Lrp1p, are nuclear exosome components known to contribute to RNA retention near transcription sites (dot RNA). Moreover, these exosome mutations lead to a substantial posttranscriptional increase in polyadenylated GAL1 3' ends. This accompanies a loss of unadenylated (pA-) GAL1 RNA and a loss of posttranscriptional gene-periphery tethering, as well as a decrease in dot RNA levels. This suggests that the exosome inhibits adenylation of some GAL1 transcripts, which results in the accumulation of pA- RNA adjacent to the GAL1 gene. We propose that this dot RNA, probably via RNP proteins, contributes to the physical tether linking the GAL1 gene to the nuclear periphery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A negative feedback loop at the nuclear periphery regulates GAL gene expression

The genome is nonrandomly organized within the nucleus, but it remains unclear how gene position affects gene expression. Silenced genes have frequently been found associated with the nuclear periphery, and the environment at the periphery is believed to be refractory to transcriptional activation. However, in budding yeast, several highly regulated classes of genes, including the GAL7-10-1 gen...

متن کامل

Sus1, Sac3, and Thp1 mediate post-transcriptional tethering of active genes to the nuclear rim as well as to non-nascent mRNP.

Errors in the mRNP biogenesis pathway can lead to retention of mRNA in discrete, transcription-site-proximal foci. This RNA remains tethered adjacent to the transcription site long after transcriptional shutoff. Here we identify Sus1, Thp1, and Sac3 as factors required for the persistent tethering of such foci (dots) to their cognate genes. We also show that the prolonged association of previou...

متن کامل

Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery.

DNA double-strand breaks (DSBs) are among the most deleterious forms of DNA lesions in cells. Here we induced site-specific DSBs in yeast cells and monitored chromatin dynamics surrounding the DSB using Chromosome Conformation Capture (3C). We find that formation of a DSB within G1 cells is not sufficient to alter chromosome dynamics. However, DSBs formed within an asynchronous cell population ...

متن کامل

30-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation

Multiple studies indicate that mRNA processing defects cause mRNAs to accumulate in discrete nuclear foci or dots, in mammalian cells as well as yeast. To investigate this phenomenon, we have studied a series of GAL reporter constructs integrated into the yeast genome adjacent to an array of TetR-GFP-bound TetO sites. mRNA within dots is predominantly post-transcriptional, and dots are adjacent...

متن کامل

3'-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation.

Multiple studies indicate that mRNA processing defects cause mRNAs to accumulate in discrete nuclear foci or dots, in mammalian cells as well as yeast. To investigate this phenomenon, we have studied a series of GAL reporter constructs integrated into the yeast genome adjacent to an array of TetR-GFP-bound TetO sites. mRNA within dots is predominantly post-transcriptional, and dots are adjacent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cell

دوره 31 1  شماره 

صفحات  -

تاریخ انتشار 2008